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Abstract. The competition among spin glass (SG), antiferromagnetism (AF) and local pairing supercon-
ductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing
interaction in the presence of an applied magnetic transverse field Γ . In the present approach, spins in
different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and
standard deviation J . The problem is formulated in the path integral formalism in which spin opera-
tors are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical
potential is obtained within the static approximation and the replica symmetric ansatz. The results are
analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of
the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution
for large g. However, there is a complex line transition separating the PAIR phase from the others. It is
second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply
the transition lines and the tricritical point due to the presence of Γ .

PACS. 05.50.+q Lattice theory and statistics – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems

1 Introduction

It is now well-established that strongly correlated systems
such as heavy fermions (HF) [1] and high temperature
superconductors (HTSC) [2], upon doping, can present
magnetic order or superconductivity. The complexity in-
volved in such physical systems as, for instance, the ex-
istence of Non-Fermi Liquid (NFL) behaviour, has given
rise to new theoretical approaches. In particular, recent
works have proposed that the presence of disorder can
affect these strongly correlated systems (see [3] and ref-
erences therein) being even source of NFL behaviour, for
example, in HF [4,5]. The presence of disorder can also in-
duce frustration which, in fact, has been found in several
HF [6–9] and HTSC [10,11] physical systems. Some theo-
ries have been investigating whether or not spin glass (SG)
phase can be found in models designed to study certain
aspects of HF or HTSC systems [12–14]. For instance, the
existence of a SG solution has been demonstrated in the
Kondo lattice model [15,16]. Nevertheless, relatively little
consideration [17] has been given in order to obtain the be-
haviour of the transition temperatures for these strongly
correlated physical systems and, thus, to mimic the phase
boundaries of their global phase diagram which includes
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antiferromagnetism (AF), SG, superconductivity and the
possible presence of a Quantum Critical Point (QCP).

Regarding the experimental scenario, there are some
similarities in the global phase diagrams between some
HF and HTSC, although the microscopical mechanisms
involved in such systems are different [18]. For instance,
the HTSC compound Y1−xCaxBa2Cu3O6 has a phase dia-
gram temperature T versus the hole concentration psh [10]
which displays an AF ordering for low psh. The respective
Néel temperature TN decreases for 0 < psh < 0.035 until
the onset of a second transition at Tf in which is found the
superposition of frustration with a preformed AF back-
ground. For psh > 0.035, there is another transition from
the previous mixed state to a pure SG. The SG transition
temperature Tg also decreases with the increase of psh un-
til the onset of superconductivity (SC). However, the SG
regime is still found into the SC region. For instance, for
0.06 < psh < 0.10 there is still traces of spin freezing.
Finally, for large values of psh, the superconductivity is
dominant. From the side of the HF systems, the example
is the compound U1−xLaxPd2Al3. When the doping of La
is increased, the corresponding phase diagram shows the
AF ordering to be replaced by a SG state in the region
0.25 ≤ x ≤ 0.65. At x = 1, the system is a superconduc-
tor. The Néel temperature TN is sharply decreased from
T = 14.6 K until T = 2.6 K when x increases, while the
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subsequent SG transition temperature Tg drops to a QCP
at x ≈ 0.8. In the intermediated doping region between
the QCP and x = 1, a NFL behaviour is observed.

In the last years, several works have been studying
the competition between SG and pairing formation in a
formulation where the spins are represented as bilinear
combination of fermionic creation and destruction opera-
tors [19–21]. The model used in such approaches is com-
posed of a random Gaussian coupling between localized
spins together with pairing interaction in the real space.
In fact, it can be shown that both terms of this sim-
ple model have the same origin. They can be derived by
eliminating the conduction electrons, in second order of
perturbation (see Appendix in Ref. [19]), from an ear-
lier model introduced to treat conventional superconduc-
tor doped with magnetic impurities [22]. A saddle-point
solution for the respective grand-canonical potential has
been obtained within functional integral formalism for the
Ising [19] and the Heisenberg [20] version of the model in
the half-filled situation using the static approximation [23]
and the replica symmetry ansatz. For the Ising case, the
phase diagram temperature versus the strength of the
pairing coupling g (in units of J that is the variance of
the Gaussian random distributed spin-spin coupling ) dis-
plays two phase boundaries. For lower g, it is found a
second order line transition between paramagnetism (NP)
and SG at Tg = 0.95 J . For large g, there is a complex
line transition T1(g) separating the PAIR phase (where
pair formation is found) from the SG and NP phases. The
line transition T1(g) is a second order for high temperature
when the boundary is between NP and the PAIR phase.
However, it becomes first order at lower temperature. The
corresponding tricritical point Ttrict has been located on
T1(g) above of Tg. As consequence, the boundary between
SG and the PAIR phase is entirely first order. Weak hop-
ping corrections done elsewhere [21] demonstrated that
the phase boundaries described previously with no hop-
ping are essentially maintained.

The model in reference [19] has two important short-
comings. The first one is the lack of quantum spin flipping
mechanism which would be able to suppress the transition
temperatures leading them to a QCP. Even the Heisenberg
extension of the problem [20] has been unable to produce
a QCP. This particular weakness has been corrected in
reference [24] by the addition of a transverse field Γ in
the Ising version of the model. The presence of Γ has
changed the behaviour of both transition temperatures Tg

and T1(g). As long Γ increases, the first one moves down-
wards in the direction of a QCP while the second one is
displaced. Therefore, Γ has also suppressed the PAIR so-
lution in the sense that it is necessary larger values of the
pairing coupling strength g to find the PAIR solution [24].
The tricritical point Ttrict is affected by the presence of
Γ . The transverse field moves up Ttrict which enlarges the
first order portion of T1(g). Finally, it has been proposed
a relationship between Γ and g (J is kept constant) based
on the argument that the pairing and RKKY interaction
have the same origin in the derivation of the model [19].
As consequence, the effects described previously are su-

perposed in a single phase diagram T versus g due to the
increase of g, hence Γ . It shows Tg decreasing towards a
QCP at g = gc, then a PAIR phase can be found at g > gc

with Ttrict located at higher values of T and g than the
case Γ = 0.

Nevertheless, the model used in references [19–21] has
a second shortcoming, it is unable to produce an AF solu-
tion. Thus, the model is useless if one is trying to study the
phase boundaries which include SG, PAIR phase and also
AF. However, quite recently the competition between AF
and SG has been analysed in a disordered two-sublattice
fermionic spin model. The model is a Gaussian random
coupling with an antiferromagnetic mean J0 and stan-
dard deviation J between spins in distinct sublattices with
the presence of a transverse Γ and parallel H magnetic
fields [25]. In fact, it is the fermionic version of the model
introduced by Korenblit and Shender (KS) [26] which
is used to study the competition between AF and SG
with classical Ising variables. This classical two-sublattice
model has itself unexpected effects as compared with the
classical single lattice SG Ising model [27]. For example,
opposite solutions are enforced by the degree of frustra-
tion (J0)−1 and H (given in units of J). When degree of
frustration decreases the AF solution is favored, while the
field H can eventually enhance the frustration in a certain
range [26]. This last effect is related with the asymmetry
between the two-sublattice due the coupling with H . The
presence of the Γ in the fermionic version of KS model
has introduced important differences if compared with its
classical counterparts as long there is a competing mech-
anism associated with J0, H and Γ [25]. For instance, Γ
suppresses the magnetic orders leading their critical tem-
peratures to QCPs, while H can favour frustration at the
same time that it destroys the AF phase.

Therefore, the purpose of the present work is to study
the competition among AF, SG and the PAIR phase using
the fermionic Ising KS model with a local pairing in-
teraction in each sublaticce in the presence of a trans-
verse field Γ . Particularly, the focus is to describe the be-
haviour of the possible transition temperatures present in
the problem. We follow the same approach used in refer-
ences [19,20,24]. The partition function is obtained in the
functional integral formalism where the spin operators are
given as bilinear combinations of Grassmann fields. The
static approximation (SA) and the replica symmetry (RS)
ansatz are used to calculate the saddle-point Grand canon-
ical potential. Particularly, we extend for the present two-
sublattice problem a procedure that mixes Nambu ma-
trices and spinors as already introduced in reference [24].
The stability of the RS solution is also investigated. Surely,
the simple model used in the present work is not suited
to describe the extremely complicate physics present in
HF as well as in HTSC systems. However, it can be, at
least, useful to mimic general features of a phase diagram
in which AF, SG, pairing coupling and a quantum spin
flipping mechanism are present.

The use of SA and RS ansatz deserves some remarks.
It is well-known the SA is not adequate to describe the
low temperature behaviour of the spin-spin correlation
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function [23]. However, the justification for the use of the
SA in this work is based on the fact that our interest is
mainly to obtain the possible transition temperatures as-
sociated with AF, SG and PAIR competition. The analysis
of the quantum rotor model in the M → ∞ indicates that
the critical line can be obtained from the zero frequency
mode [28].

Although the focus in this work is to obtain the phase
boundaries of the fermionic version of KS model with a
pairing interaction in the presence of a transverse field Γ ,
the thermodynamics is not the only source of valuable in-
formation. In the case of Ising SG fermionic model, other
physical quantities can have an interesting behaviour. For
example, the density of states (DOS) and, hence, the lo-
cal Green’s function are affected at low temperature by
the replica symmetry breaking [30]. In particular, there
is a presence of a pseudogap. Recently, a mapping be-
tween the one-lattice fermionic Ising SG and the classical
Ghatak-Sherrington model [31] has demonstrated that the
true origin of such effects in the DOS are, in fact, classi-
cal [32]. However, for the present model we can speculate
if there is such kind of mapping due to the presence of
the transverse field. In that sense, this work can be also
thought as a first step towards the understanding of the
problem given by the model introduced here from a many-
body perspective since the thermodynamics is well under-
stood, at least, at mean field level.

This paper presents the following structure. In Sec-
tion 2, we derive the saddle-point Grand Canonical po-
tential and the set of equations for the order parame-
ters which is enlarged when compared with a single lat-
tice Ising model studied in reference [24]. In Section 3,
we solve the order parameter equations. In order to cap-
ture properly the competition among the phases present
in the problem, we build up phase diagrams T versus g
for several values of Γ and J0 given in units of J where J0

and J are the mean and standard deviation of the random
Gaussian spin-spin interlattice coupling, respectively. On
the other hand, the effects of the transverse field Γ are
better shown in a phase diagram T versus Γ for constant
values of g and J0. We also obtain a phase diagram T
versus g in which Γ and J0 are related with g based on
the same arguments proposed in reference [24]. This pro-
cedure mixes the effects of both parameters in the phase
diagram. In the last section, we make our conclusions.

2 General formulation

The model studied here is composed by interlattice
Gaussian random spin-spin interaction [26], a intrasite lo-
cal BCS pairing interaction (which favors double occupa-
tion of sites in each sublattice) with a transverse magnetic
field applied Γ . Therefore, the Hamiltonian is given by:

H = −
∑

iajb

Jiajb
Sz

ia
Sz

jb
− 2Γ

∑

p

N∑

ip=1

Sx
ip

− g

N

∑

p

∑

ipjp

c†ip↑c
†
ip↓cjp↓cjp↑ (1)

where the sums over ip (jp) are run over the N sites of
each sublattice p (p = a or b). The exchange interaction
Jiajb

is an independent random variable with the following
Gaussian distribution:

P (Jiajb
) =

√
N

64πJ2
exp

[
−
(
Jiajb

+ 4
N J0

)2
64J2

N

]
. (2)

The spin operators in equation (1) are defined in terms of
fermion operators:

Sz
ip

=
1
2
[
n̂ip↑ − n̂ip↓

]
, Sx

ip
=

1
2

[
c†ip↑cip↓ + c†ip↑cip↓

]
(3)

where n̂ipσ gives the number of fermions at site ip with
spin projection σ =↑ or ↓. c†ipσ and cipσ are the fermion
creation and annihilation operators, respectively.

The problem is formulated in a path integral formalism
in which the spin operators are represented as anticom-
muting Grassmann fields (φ∗, φ). Therefore, the Grand
canonical partition function is given by:

Z =
∫

D[φ∗φ] exp[A] (4)

with the action

A =
∫ β

0

dτ

{
∑

p,σ

∑
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[
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ipσ(τ)
(

∂

∂τ
− µ

)
φipσ(τ)

]

− H(φ∗(τ), φ(τ))

}
, (5)

β = 1/T (T is the temperature), τ is a complex time and µ
is the chemical potential. The Fourier decomposition of
the time-dependent quantities is employed in equation (5).
The action can be write as A = AΓ + ASG + ABCS with:

AΓ =
∑

p

∑

ip

∑

w

φ†
ip

(ω)[iω + βµ+βΓσx]φ
ip

(ω), (6)
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ABCS =
βg

N
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ipjp

∑

ω′
ρ∗ip

(ω
′
)ρip(ω

′
) (9)

where ρip(ω
′
) =

∑
w φip↓(−ω)φip↑(ω

′
+ ω), συ (υ = x, y

or z) denotes the Pauli matrices, φ†
ip

= (φ∗
ip↑(ω) φ∗

ip↓(ω))

is a Grassmann spinor, and ω = (2m + 1)π and ω
′
= mπ

(m = 0,±1,...) are the Matsubara’s frequencies.
The grand canonical potential is obtained within

the static approximation which considers ω
′

= 0 in
equations (7)–(9) [24,25]. The configurational averaged
thermodynamic potential per site is obtained with the
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use of the replica method: βΩ = − 1
N 〈ln Z{y}〉Jij =

− 1
2N lim

n→0
(〈Zn〉Jij − 1)/n where the replicated partition

function is:

〈Zn〉Jij =
∫ ∏

α

D(φ∗αφα) exp
[
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Γ + Ast
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]

(10)
where Aα

Γ is given by equation (6) with a sub-index α,
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∑
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with the replica index α running from 1 to n. In equa-
tion (12), it is introduced the Nambu matrices φ

′α†
j

(ω)

and φ
′α
j

(ω) in which φ
′α†
j

(ω) = (φ∗α
j↑ (ω) φα

j↓(−ω)).
Equation (11) can be rearranged reviewing the sums

over different sublattices by square sums over the same
sublattice. The replicated partition function is then lin-
earized by using Hubbard-Stratonovich transformations.
It inserts the replica-dependent auxiliary fields qαβ

p , mα
p ,

ηα
R,p and ηα

I,p in equation (10). The Gaussian integrals
over these fields have been exactly performed in the
thermodynamic limit by the steepest descent method.
Therefore, the Grand canonical potential is:
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with the matrix ηα
p

= ηα
R,pσ

x + ηα
I,pσ

y. The fields qαβ
p , mα

p

and |ηα
p | in equation (13) are given by saddle-point equa-

tions, in which qαβ
p is related with the spin glass order

parameter, mα
p is the magnetization of the sublattice p,

and |ηα
p | is an order parameter that indicates long range

order where there is double occupation of sites in sublat-
tice p.

In the present work, it is assumed the replica sym-
metric ansatz, which considers qαβ

p = qp for all α 	= β,

qαα
p = qp = χ̄p + qp, mα

p = mp, and ηα
p = ηp for all

α. The physical quantity βχ̄p is the static susceptibil-
ity when J0 = 0. The sums over replica indices are per-
formed. It produces quadratic terms in equation (14) that
are linearized introducing new auxiliary fields in equa-
tion (13). The resulting functional Grassmann integral is
an exponential that sums quadratic forms of spinors and
Nambu matrices. In order to perform the integral over
the Grassmann fields, it can be used a matrix that mixes
elements of spinors and Nambu matrices, such as:

Λp
αβ =

∫
Dzp

{∫
DξpI(zp, ξp)

}n

(15)

where Dx = dxe−x2/2/
√
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]

(16)
with

Φ†
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[
φ∗

p↑(w) φ∗
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]
, (17)

G−1
p (ω) =

⎛
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0 −βgη∗
p −βΓ iω − ζ−

⎞
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and ζ± = βµp±βhp. The internal field hp = J(
√

2qp′ zp +√
2χ̄p′ ξp)−J0mp′ , which acts on the sublattice p, depends

on the order parameters of sublattice p
′
(p

′ 	= p) [25].
The functional integral in equation (16) and the sum

over the Matsubara’s frequencies can be performed:

I(zp, ξp) = cosh β
√

µ2 + g2η2
p + coshβ

√
∆p (19)

with ∆p = h2
p + Γ 2. This result and equation (13) are

used to express the thermodynamic potential as:

2βΩ = −βJ0mamb + β2J2(χ̄aχ̄b + χ̄aqb + χ̄bqa)

+βg(η2
a + η2

b ) −
∑
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∫ ∞

−∞
Dzp ln Kp(zp) + ln 4 (20)

where

Kp(zp) =
(

coshβgηp +
∫ ∞

−∞
Dξp coshβ

√
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)
(21)
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Fig. 1. Phase diagrams as a function of T/J and pairing coupling g/J for J0 = 1.5 J and for two values of Γ/J : Γ = 0 and
Γ = 1 J . The full lines indicate second-order transitions while the dashed lines indicate first-order transitions.

with µ = 0 to ensure the half-filling situation. The order
parameters are given by the extreme condition of equa-
tion (20):

mp =
∫ ∞

−∞
Dzp

∫∞
−∞ Dξp

hp√
∆p

sinh β
√

∆p

Kp(zp)
(22)
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1
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∫∞
−∞ Dξp

1
β2

∂2

∂h2
p

coshβ
√
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Kp(zp)
− qp. (25)

The stability of replica symmetric solution is analysed by
Almeida-Thouless eigenvalue λAT:

λAT = 1 − 4(βJ)4
∏

p

∫ ∞

−∞
Dzp

(
Ip(zp)

(Kp(zp))2

)2

(26)

where

Ip(zp) = Kp(zp)
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Dξp

1
β2
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∂h2
p

coshβ
√

∆p

−
(∫ ∞
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√
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. (27)

3 Phase diagrams

Numerical investigations of the order parameter equa-
tions (22–25) allow us to find three kinds of solutions.

The SG solution corresponds to qa = qb 	= 0 (with
ma = mb = 0, ηa = ηb = 0) while the AF solution is
ma = −mb 	= 0 (with qa = qb 	= 0, ηa = ηb = 0). The spin
pairing solution (PAIR phase) corresponds to ηa and ηb

different from zero while the rest of order parameters is
zero. The instability of the replica symmetry (RS) solution
of the SG is also investigated which allows us to identify
the presence of a mixed phase AF+SG. This mixed phase
corresponds to a replica symmetry breaking (RSB) SG
with mp 	= 0 (p = a, b) [24]. The emergence of each type
of solution depends on the relationship among parame-
ters g, (J0)−1 (the degree of frustration) and Γ given in
units of J .

Therefore, we can build, in the beginning, two kinds
of phase diagrams T (T is the temperature) versus: (a) g
(g is the strength of intrasite pairing interaction) with
J0 and Γ kept independents; (b) Γ with g and J0 kept
independents. The first phase diagram can show directly
the competition among AF, SG and PAIR phases. The
second one gives more precise information about the role
of the transverse field on the transition lines present in the
problem.

In Figure 1, we show the results for T versus g for
J0 = 1.5 J with Γ = 0 and J . Therefore, in the region of
small g in Figure 1, it is quite clear that the parameter J0

is related with the presence of magnetic solutions. Firstly,
the AF solution appears below TN. Then, when temper-
ature is decreased, there is the onset of a mixed phase
AF+SG at Tf . Finally, at lower temperature, there is a
transition from AF+SG to a SG phase at Tg. The three
magnetic transition lines mentioned above are second or-
der. For large g, the solutions found for the order parame-
ters indicate the existence of the PAIR phase [19,20,24] in
which there is pairing formation in both sublattices. The
role of the transverse field Γ is also clear in this particu-
lar phase diagram. The field decreases simultaneously the
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Fig. 2. Phase diagrams as a function of T/J and pairing coupling g/J for J0 = 1.7 J and for two values of Γ/J : Γ = 0 and
Γ = 1 J . It is used the same convention as Figure 1 for the transition lines.

magnetic transition temperatures TN, Tf and Tg. It also
displaces the PAIR transition line T1(g) in the sense that
it is necessary to increase the parameter g to find a PAIR
solution in the problem.

Figure 2 shows the previous phase diagrams when the
degree of frustration is decreased (J0 = 1.7 J) with the
transverse field kept Γ = 0 and J . We can compare the
results in the small and large g region in this figure with
the phase diagram given in Figure 1. The conclusion is
direct, in the small g region, there are competing effects
due to J0 and Γ [25]. The decrease of the degree of frus-
tration enhances TN. However, it decreases Tf and Tg as
well. On the other hand, the whole set of magnetic tran-
sition temperatures TN, Tf and Tg decreases with Γ . The
superposition of both effects is responsible by the suppres-
sion of the SG phase in Figure 2. The line transition T1(g)
is not affected by the change of the degree of frustration
(J0)−1 while the transverse field Γ has the same role as
before, it displaces T1(g).

The numerical analyses indicate that the PAIR tran-
sition line T1(g) is more complicated than the magnetic
ones. It is a second order phase transition at higher tem-
peratures and a first one at lower temperatures, where
there are multiple PAIR solutions. In this case, the sta-
ble solution minimazes the thermodynamic potential. This
same criterion is used to obtain the first-order boundary.
The transition lines can be also analysed by performing a
Landau expansion of the thermodynamic potential in pow-
ers of the order parameters (qa, qb, ma, mb, ηa and ηb). We
can explore the symmetry of the parameters: q = qa = qb,
χ̄ = χ̄a = χ̄b, η = ηa = ηb and ma = −mb. Equation (20)
is expanded in powers of q, η and l = (ma − mb)/2 (l
is the antiferromagnetic order parameter), while χ̄(q, l, η)
is given by the saddle-point equation (25). After some
lengthy calculations, the Landau expansion of the ther-

modynamic potential is:

2βΩ = β2J2χ̄0 − 2 lnK0 + A2l
2

+ B2q
2 + C2η

2 + C4η
4 (28)

with

A2 = 4βJ0(1 − βJ0χ̄0)l2 (29)

B2 = −β2J2

2!
+ β4J4χ̄2

0, (30)

C2 = βg − β2g2

2K0
, (31)

C4 =
β4g4

4!K2
0

(
3J2

g2
K0χ̄0χ̄2 + 3 − K0

)
(32)

where K0 = 1 +
∫∞
−∞ Dξ cosh

√
∆0 ,

χ̄0 =
1

K0

∫ ∞

−∞
Dξξ2 sinh

√
∆0√

∆0

, (33)

χ̄2 =
−β2g2χ̄0/K0

1 + β2J2[χ̄2
0 −
∫

Dξξ4( cosh
√

∆0
∆0

− sinh
√

∆0
∆0

)/K0]
(34)

and ∆0 = 2β2J2χ̄0ξ
2 + β2Γ 2. The tricritical point Ttrict

can be obtained from equations (31–32) which show that
the transverse field Γ affects the location of the Ttrict. Ac-
tually, it moves upwards Ttrict (see Figs. 1 and 2) [20,24].

In Figure 3, we show the phase diagram T versus Γ for
J0 = 1.5 J and g = 0, 6.5 J , 8 J and 9 J . The case in which
there is no pairing coupling is shown in Figure 3a. In fact,
this situation has been studied in reference [25] where the
increase of Γ leads the transition temperatures TN, Tf and
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Fig. 3. Phase diagrams as a function of T/J and Γ/J for J0 = 1.5 J and several fixed values of g/J : (a) g = 0, (b) g = 6.5 J ,
(c) g = 8.0 J and (d) g = 9.0 J . It is used the same convention as Figure 1 for the transition lines.

Tg towards their respective QCP’s. In particular, the crit-
ical transverse field for AF transition can be obtained an-
alytically by expanding the sublattice magnetization mp

(see Ref. [25]). The ordering Tg < Tf < TN is kept when Γ
increases, which is the reason why the transition temper-
atures TN, Tf and Tg are simultaneously depressed in Fig-
ures 1 and 2. The increase of g (see Figs. 1b, 1c, 1d) al-
lows the existence of a PAIR solution which depends on,
as discussed in reference [24], of the ratio Γ/g as well as
the existence of a magnetic solution depends on Γ/J0 in
the present work. From this view point, the role of Γ in
Figures 1 and 2 is clearly confirmed in Figure 3, it tends to
suppress any phase which is appearing as solution in the
problem. Actually, the displacement of the PAIR phase
in Figures 1 and 2, when Γ increases, reflects this effect.
Moreover, the increase of g also leads (if J0 is kept con-
stant) the PAIR phase to become dominant. It also moves
upward the tricritical point Ttrict as in reference [24].

The information contained in Figures 1–3 can be dis-
played in a more adequate format if we assume a rela-
tionship among the parameters Γ , J0 and g. This kind
of procedure has already been adopted in reference [24],
which is ultimately justified by the fact that both RKKY
and the pairing interaction in equation (1) are originated
from the same source [19]. In the present case, Γ would
have the equivalent role of spin flipping part of the Heisen-
berg model [24]. Besides, it is a more convenient format to
compare with experimental results. Therefore, we assume

the following relationship:

Γ = α1g + δ1 (35)

J0 = α2g + δ2. (36)

The complicated interplay between J0 and Γ can be
adjusted by the factors α1, α2, δ1 and δ2 in equa-
tions (35)–(36). We choose α2 < 0, which means that the
degree of frustration enhances with the increases of the
pairing coupling g. The factor δ2 is adjusted to guarantee
the AF coupling and, with the remaining factors, also to
maintain the transitions and the tricritical point located
at the same scale as Figures 1–3.

Figure 4 shows the phase diagram T versus g with
Γ = 0. For that case, the behaviour of transition tem-
peratures is obtained from the solution of order pa-
rameters (Eqs. (23)–(25)) together with the AT line
(Eqs. (26), (27)) using only equation (36). For small g
(small degree of frustration), there is a transition from
paramagnetism (NP) to AF phase. Consequently, the Néel
temperature decreases when g is increased. Then, in a in-
terval of g, there is direct transition from NP to SG phase
(in this case Tg = Tf ). For large g the PAIR phase is com-
pletely dominant. At temperature T < Tg, the situation is
richer when g increases as consequence of the RS lack of
stability. The solutions found are AF at small g and SG
at some interval of g as before. However, in a very small
range of g, a mixed phase AF+SG intermediated between
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Fig. 4. Phase diagram T/J versus g/J builds for the relation J0 = 3.50 − 0.71g and Γ = 0. The dashed line indicates a
first-order phase transition while the full lines indicate second-order phase transitions.

AF and the SG phases appears. Then, after the sequence
of second order transitions AF-AF+SG-SG, there is a first
order boundary between SG and the PAIR phase. The
location of the tricritical point Ttrict is not changed as
compared with phase diagrams shown in Figures 1 and 2
when Γ = 0.

Figures 5, 6 show the solution for the order parame-
ters when the transverse field Γ is also tunned by equa-
tion (35). The numerical factors α1 and δ1 can be used to
adjust the strength of the transverse field as g increases.
In Figure 5, Γ affects the transition line TN and particu-
larly Tg, which moves downwards when g increases. The
sequence of phases at lower temperature is preserved as
in Figure 4. However, Γ is not strong enough to lead Tg

to a QCP. On the other hand, the behaviour of the PAIR
phase boundary T1(g) is affected as in Figures 1–3 in which
Ttrict moves upward when Γ increases. In particular, it is
possible to find one metastable SG solution into the PAIR
phase below Tg which keeps going downward. Figure 6
displays the situation where α1 and δ1 are adjusted to en-
hance the strength of Γ as compared with Figure 5. For
that case, the spin flipping induced by Γ is strong enough
to lead Tg to a QCP while the Ttrict is obtained at a larger
value than before. For both cases of Figures 5 and 6, the
tunning of Γ still preserves the sequence of phases AF-
AF+SG-SG at low temperature likewise the case Γ = 0
for a certain range of g.

4 Conclusions

In the present paper, we have analysed the competition
among antiferromagnetism (AF), spin glass (SG) and pair-
ing formation phase (PAIR) in the presence of a quan-
tum tunneling mechanism. The two-sublattice model used
is composed by a Gaussian random interlattice Ising in-
teraction (with mean J0 and standard deviation J) [26],

an intralattice pairing interaction with an applied trans-
verse field Γ . The partition function is calculated in the
functional integral formalism in which the spin opera-
tors are given by bilinear combinations of Grassmann
fields [19,20,24]. The saddle-point Grand Canonical po-
tential is obtained within of static approximation (SA),
the replica symmetry (RS) ansatz and in the half-filling.
Particularly, the use of SA is justified because our main
interest is to study in detail the phase boundaries among
AF, SG and PAIR phases when the spin flipping is acti-
vated by a transverse field Γ .

In the mean field theory presented, the phase tran-
sitions of the fermionic system defined in equation (1)
appear related with pairing and magnetic internal fields
for each sublattice p. The magnetic one hp (p = A, B)
has a random and AF components. In particular, the
AF part of hp depends on the sublattice magnetization
mp′ as well as the random part is associated with the
replica non-diagonal SG order parameter qp′ and also with
χp′ = qp′ − qp′ (qp′ is the replica diagonal SG order pa-
rameter), where p 	= p′. In contrast, the pairing internal
field applied in the sublattice p depends on the PAIR or-
der parameter ηp. Furthermore, there is the presence of Γ
which tunes the spin flipping and, hence tends to suppress
any kind of magnetic phase. The pairing formation is also
affected, as it can be clearly seen in Figure 3.

The solutions for qp, χp, mp and ηp (PAIR order pa-
rameter) are located in a parameter space given (in units
of J) by J0, Γ and g (the strength of the pairing inter-
action). Figures 1, 2 and 3 show the phase diagrams for
several cuts in the previous space.Thus, it is possible to
identify how each parameter can favour one particular so-
lution for a given temperature. Another important point
is to locate the Almeida-Thouless line (Tf ) in such space.
To take a typical case, in Figure 2, we present the phase
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Fig. 5. Phase diagram T/J versus g/J
obtained from a relationship among J0/J ,
Γ/J and g/J (J0 = 2.77 − 0.24g and Γ =
1.30+0.09g). It is used the same convention
as Figure 1 for the transition lines.

Fig. 6. Phase diagram T/J versus g/J
for the relations J0 = 2.00 − 0.322g and
Γ = 1.85 + 0.09g. The same convention as
Figure 1 is used for the transition lines.

diagram temperature versus g for a J0 = 1.7J and Γ = 0
and J . For lower g, the magnetic solutions are dominant
with a sequence of second order phase transitions AF, a
mixed phase AF+SG and SG at lower temperature. For
larger g, the local pairing is dominant. Actually, the PAIR
phase boundary T1(g) has a complex nature with the pres-
ence of a tricritical point Ttrict which is quite dependent
on the transverse field Γ (see Eqs. (31, 32)).

In the phase diagrams 4, 5 and 6, we propose a re-
lationship between the parameters J0 and Γ with g (see
Eqs. (35, 36)) based on the original derivation of the model
given in equation (1) (see Ref. [19]). This procedure allows
to compare our results with the phase boundaries found in
experimental phase diagrams. For instance, there are some

similarities between the experimental situation for Y1−x

CaxBa2Cu3O6 and the phase diagram shown in Figure 5
as well as between U1−xLaxPd2Al3 and the one shown in
Figure 6, if it is possible to associate the doping in those
physical systems with the parameter g. For the first case,
similarities such as the sequence of phases and, in partic-
ular, the presence of SG mixed with an AF background.
In terms of the present model, the decrease of experimen-
tal SG temperature transition Tg could be explained by
the presence of quantum spin flipping mechanism which
is not strong to lead Tg towards a QCP. For the second
one, there are also similarities not only between the phase
boundaries, but also with the behaviour of Tg which is
depressed to a QCP.
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To conclude, in this work we studied the thermo-
dynamics of the model given in equation (1). Our goal
is to obtain the corresponding phase boundaries and,
then to mimic the global phase diagram of physical sys-
tems as Y1−xCaxBa2Cu3O6 and U1−xLaxPd2Al3. As last
remarks it should be noticed the role of χp, which carries
the effects of disorder even at T > Tg, to determine the
PAIR phase boundary T1(g). In the case T > Tg, χp is
equal to the replica diagonal SG order parameter qp. In
Figure 6, because of the presence of QCP, this identity is
true for the entire range of temperature after the QCP. It
is well known that qp can be written in terms of the site
occupation in the sublattices [33]. At the same time, the
nature of T1(g) depends deeply on the transverse field Γ .
This arises the question how the phase boundaries in the
present problem would be affected by the interplay be-
tween the chemical potential µ and Γ in situations like
those shown in Figures 5 and 6. It is also important to
remark that the precise location of the phase boundaries
below Tf needs RSB spin glass solutions, as for instance
the boundary between SG and mixed phase and the first-
order transition between SG (or mixed phase) and PAIR
phase [21]. The study of the situation where µ 	= 0 and the
implementation of RSB will be object of a future work.
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